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SUMMARY

The concept of fully adaptive multiscale �nite volume methods has been developed to increase spatial
resolution and to reduce computational costs of numerical simulations. Here grid adaptation is performed
by means of a multiscale analysis based on biorthogonal wavelets. In order to update the solution in
time we use a local time stepping strategy that has been recently developed for hyperbolic conservation
laws.
The adaptive multiresolution scheme is now applied to two-dimensional shallow water equations with

source terms. The e�ciency of the scheme is demonstrated on several problems with a general geometry,
including circular damp breaks, oblique hydraulic jump, supercritical channel �ows encountering sudden
change in cross-section, and, �nally, the bore wave and its interactions. Copyright ? 2005 John Wiley
& Sons, Ltd.

KEY WORDS: shallow water equations; multiscale techniques; local grid re�nement; �nite volume
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1. INTRODUCTION

Shallow water equations (SWEs) are used to describe many physical problems of interest often
encountered in environmental and hydraulic engineering: free surface �ows caused by dam
breaking, hydraulic jumps, open channel �ows, bore wave propagation, tidal �ows in estuary
and coastal zones are just a few examples. The SWEs are obtained through integration of
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the Navier–Stokes system over the depth of the �uid body by assuming hydrostatic pressure
distribution.
Various �nite volume schemes developed for general systems of hyperbolic conservation

laws have been applied to the SWEs. For instance, Roe’s scheme has been modi�ed by
Berm�udez and V�azquez [1] to include source terms. Anastasiou and Chan [2] developed and
tested a second-order upwind �nite volume method on unstructured meshes. Chipada et al.
[3] used a Godunov-type method together with Roe’s approximate Riemann solver. Liska
and Wendro� [4] employed their composite scheme. In particular, the treatment of problems
with varying topography, e.g. rivers, coastal areas, oceans and granular �ows, lead to the
development of so-called well-balanced schemes, cf. References [5, 6]. For more details on
the development of �nite volume schemes for SWEs we refer the interested reader to the
aforementioned papers and references therein.
Typically, �uid �ow problems contain a wide range of spatial scales such as shocks or wave

fronts in high activity regions and stagnation zones in low hydrodynamic activity regions. To
simulate accurately the di�erent scales over large and complex domains a highly resolved
mesh is required. For multidimensional problems, in particular, uniform grids are not feasi-
ble. However, due to the heterogeneity of the �ow �eld high resolution is only needed in a
small part of the computational domain whereas a moderate resolution is su�cient elsewhere.
Therefore, adaptive strategies can signi�cantly improve the e�ciency of the computation.
Consequently, a number of adaptive mesh strategies have been investigated by several re-
searchers in the past decade with the goal of concentrating cells only where they are most
required, while maintaining acceptable CPU time. A recent approach is the multiresolution
method.
The multiresolution framework was �rst introduced by Harten [7, 8] for one-dimensional

conservation laws and later extended to multidimensional problems [9–13] on Cartesian, curvi-
linear and unstructured meshes, respectively. The basic idea is to represent cell averages as-
sociated with any given �nite volume method into a di�erent format that gives insight on
the local smoothness of the solution. With this approach the computational time is reduced
by using sophisticated numerical �uxes in regions where high resolution is needed and cheap
interpolations in regions requiring less resolution. The solution is adequately resolved at the
same accuracy of the reference scheme, i.e. the scheme on a given uniform highest level of
resolution (reference mesh).
Parallel to Harten’s approach a fully adaptive multiresolution method has been developed

by M�uller et al. [14, 15]. In this approach the cell average representation is used to adapt
the computational mesh. The advantage of this method includes a signi�cant reduction of
the computational e�ort in terms of CPU time and memory requirements. In particular, the
accuracy of the reference solution on the reference mesh is maintained. This approach has
found many applications in compressible �uid �ows, particularly, in steady- and unsteady-state
solutions [16, 17].
The present work now extends and tests the fully adaptive multiscale �nite volume methods

to SWEs, combining a quadtree grid generation strategy based on B-splines and fully adaptive
multiresolution methods. In contrast to previous work we employ a locally varying time
stepping algorithm, recently developed in Reference [18]. This algorithm uses di�erent time
steps at di�erent resolution levels such that a CFL condition is satis�ed locally using the
same CFL number for all resolution levels. Furthermore, the number of grid adaptation steps
is reduced since fewer time steps are performed for the coarser cells. By various test cases
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FULLY ADAPTIVE MULTISCALE METHODS 419

we show the bene�ts of the fully adaptive multiscale concept for several steady and unsteady
�ow problems with general geometry.
The paper is organized as follows. In Section 2, we present the governing equations together

with the reference �nite volume method based on ENO reconstruction and Roe’s approximate
Riemann solver. The fully adaptive multiresolution method will be described in Section 3. In
particular, we discuss the local grid adaptation and grid generation. Results of a collection of
numerical experiments are presented and discussed in Section 4.

2. 2D SHALLOW WATER EQUATIONS AND FINITE VOLUME DISCRETIZATION

The shallow water equations are obtained by integration of the Navier–Stokes system over
the depth of the �uid by assuming hydrostatic pressure distribution. Neglecting viscosity and
turbulence e�ects, the coriolis force, and the bed and shear stress, the two-dimensional shal-
low water equations for any control volume V with boundary @V and outward unit normal
n=(nx; ny) on the surface element dS ⊂ @V can be written in integral form as

@
@t

∫
V
u(t;x) dV +

∫
dS
f c(u(t;x)) · n(x) dV =

∫
V
s(x; u(t;x)) dV (1)

where u is the vector of conserved variables, f c = (f ; g)T is the convective �ux vector and s
is the vector of source terms. These are de�ned by
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(2)

where h is the water depth, u and v are the velocity components, b is the partial depth between
a �xed reference level and the bed surface, and g is the acceleration due to gravity.
In the present approach, the physical domain � is discretized by a structured grid composed

of quadrilateral cells Vi; j with volume |Vi; j| :=
∫
Vi; j
1 dV . For simplicity, the time is discretized

by a constant time step size �, i.e. tn+1 = tn+ �. For a quadrilateral �nite control volume Vi; j,
see Figure 1, the integral equation (1) can be rewritten in the evolutionary form

ui; j(tn+1)= ui; j(tn)− �
|Vi; j| b(t

n; tn+1) + �s(tn; tn+1) (3)

where we introduce the averages

ui; j(tn) =
1

|Vi; j|
∫
Vi; j
u(tn;x) dx; b(tn; tn+1)=

1
�

∫ tn+1

tn

∫
@Vi; j
fn(x)(u(tn;x)) dS dt (4)

s(tn; tn+1) =
1
�

1
|Vi; j|

∫ tn+1

tn

∫
Vi; j
s(x; u(tn;x)) dx (5)
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Figure 1. Quadrilateral �nite control volume.

Here the �ux in normal direction is determined by fn := f c · n= fnx + gny. Furthermore @Vi; j
denotes the boundary of the cell Vi; j, and the superscript represents the time level. Equation (4)
is obtained by integrating Equation (1) over the control volume Vi; j × [tn; tn + �].
From the evolution equation (3) we deduce the �nite volume discretization

vn+1i; j = v
n
i; j − �

|Vi; j| B
n
i; j + �S

n
i; j (6)

where we replace the �ux balance b(tn; tn+1) and the source term s(tn; tn+1) by approximations
Bni; j and Sni; j. The numerical �ux balance is approximated by

Bni; j :=
4∑
l=1

|�l|Fnnl (7)

Here |�l| denotes the length of the cell side with normal vector nl, and Fnnl the corresponding
numerical �ux in normal direction, see Figure 1. In the present work, we use Roe’s approx-
imate Riemann solver that has been extended to SWEs used in Reference [1]. In order to
avoid non-physical expansion shocks we use Harten’s entropy �x [19]. The spatial and tempo-
ral accuracy are improved by using a quasi one-dimensional second-order ENO reconstruction
according to Reference [20]. Here the reconstruction is applied to the characteristic variables
instead of the conserved variables.
Finally, the numerical source term is approximated by

Sni; j= s(x̂i; j ; v
n
i; j) ≡ −ghni; j

⎛
⎜⎜⎜⎜⎜⎜⎝

0

@b
@x
(x̂i; j)

@b
@y
(x̂i; j)

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

where x̂i; j := (1=|Vi; j|)
∫
Vi; j
x dV denotes the centroid of Vi; j, and hni; j approximates the water

depth. Note that this simple source term discretization might cause problems of a numerical
imbalance between the �ux gradient and source terms for cases with locally varying bed
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topography. However, the spurious oscillations become smaller with a higher grid resolution.
Since our computations are performed on locally very high resolved grids these e�ects are not
observed. For a moderate resolution one has to replace (8) by a well-balanced discretization,
cf. Reference [6].

3. THE ADAPTIVE MULTISCALE METHOD

The e�ciency of the �nite volume scheme presented in Section 2 is now to be improved by
employing local grid re�nement. For this purpose, we employ recent multiresolution techniques
�rst proposed by Harten in the context of �nite volume schemes for hyperbolic conservation
laws, cf. Reference [7]. In contrast to Harten’s original idea, we do not use these techniques
to control the �ux computation but to trigger the grid adaptation process. For details we refer
the reader to Reference [14]. In the following we con�ne only to the basic ideas.

3.1. Multiscale analysis

In order to analyse the local regularity behaviour of the �ow �eld we employ a multiresolution
analysis. For this purpose we may use the concept of biorthogonal wavelets [21] or the concept
of prediction and reconstruction, cf. Reference [22].
The fundamental idea is to present cell averages on a given uniform highest level of

resolution (reference mesh) associated with any given �nite volume discretization (reference
scheme) as cell averages on some coarse level where the �ne scale information is encoded
in arrays of detail coe�cients of ascending resolution. This decomposition is performed on a
hierarchy of nested grids. In the present work, we con�ne to structured two-dimensional grids
though the general framework is not restricted to this con�guration but can also be applied
to unstructured grids and irregular grid re�nements in arbitrary space dimensions. Since the
meshes are assumed to be structured we may enumerate the cells on each level l by a multi-
index, i.e. k=(k1; k2). Then a hierarchy of partitions Gl= {Vl;k}k∈Il with increasing resolution
l=0; : : : ; L of the computational domain �⊂R2, i.e. �= ⋃k∈Il Vl;k, is determined by dyadic
grid re�nement, i.e.

Vl;k=
⋃
e∈E
Vl+1;2k+e; E := {0; 1}2 (9)

See Figure 2 for an illustration. Relative to the partitions Gl we introduce the cell averages
of a scalar, integrable function u∈L1(�), i.e.

ûl;k :=
1

|Vl;k|
∫
Vl;k

u(x) dx (10)

Now the ultimate goal is to transform the array of cell averages uL := (ûL;k)k∈IL corresponding
to a �nest uniform discretization level L into a sequence of coarse grid data u0 := (û0;k)k∈I0
and details d l := (dl;k)k∈Il , l=0; : : : ; L − 1, representing the successive update from a coarse
resolution to a high resolution. This is to be realized successively by a multiresolution trans-
formation where we proceed levelwise from �ne to coarse, i.e.

ûl;k=
∑
e∈E

|Vl+1;2k+e|
|Vl;k|

ûl+1;2k+e; dl;k=
∑
r∈A

�rûl+1;2k+r (11)
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Figure 2. Sequence of nested grids.

Figure 3. Multiscale transformation.

where the �rst relation results from the nestedness of the grids and the linearity of the inte-
gration operator. Then (11) provides an equivalent representation which can be reversed by
the inverse multiresolution transformation

ûl+1; k =
∑
r∈B

�rûl;�k=2�+r +
∑
r∈C

�rdl;�k=2�+r (12)

Here the coe�cients �r, �r and �r only depend on the geometric data but not on u. How-
ever, they may depend on the level l and the position k. The same holds true for the sets
A, B and C. For the details on the de�nition of the index sets and the computation of the
coe�cients we refer to References [11, 14]. Furthermore, we emphasize that there are 2d−1

(here d=2) detail coe�cients corresponding to one cell. Therefore, the coe�cients dl;k in
principle represent a vector of details. In Figure 3, we sketch graphically the procedure of the
multiscale transformation.
Note that the construction of an appropriate multiresolution analysis is subject to three

conditions, namely, (i) reversibility, i.e. transformations (11) and (12) are equivalent, (ii)
e�ciency, i.e. the cardinality of the index sets A, B and C is uniformly bounded, and (iii)
stability, i.e. the linear multiresolution operator is uniformly bounded in the spectral norm.

3.2. Local grid adaptation

It can be shown that the details become small with increasing re�nement level when the
underlying function is smooth. This motivates us to neglect all su�ciently small details in
order to compress the original data. The idea is simply to discard all coe�cients dl;k whose
absolute values fall below a certain threshold. For this purpose, we introduce the index set

DL; ” := {(l;k); |dl;k|¿”l; k∈ Il; l∈ {0; : : : ; L− 1}}
corresponding to what will be referred to as signi�cant details. Here ”l=2l−L” is a level-
dependent threshold value. By means of the set DL; ” a locally re�ned grid is determined. For
this purpose, we recursively check proceeding levelwise from coarse to �ne whether there
exists a signi�cant detail to a cell. If there is one, then we re�ne the respective cell. Note that
this procedure only works provided that the set DL; ” corresponds to graded tree. We �nally
obtain the locally re�ned grid with hanging nodes represented by the set GL; ” ⊂ {(l;k);k ∈
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Il; l=0; : : : ; L}, i.e. �=
⋃
(l;k)∈GL; ”

Vl;k: This set is composed of the leaves corresponding to
the tree of signi�cant details. Of course, the crux in this context is to arrange this procedure
in such a way that at no stage of the computation the fully re�ned uniform mesh is used.
For this purpose, the multiresolution transformations (11) and (12) are performed locally to
provide the details at the old time step and the cell averages on the new grid.
Since the �ow �eld and, hence, the cell averages, evolves in time, grid adaptation is per-

formed after each evolution step to provide the adaptive grid at the new time level. For this
purpose, we have to predict all details at the new time level n+1 that may become signi�cant
due to the evolution by means of the details at the old time level n. In order to guarantee the
adaptive scheme to be reliable in the sense that no signi�cant future feature of the solution
is missed, the prediction set D̃

n+1
L; ” has to satisfy

Dn
L; ” ∪Dn+1

L; ” ⊂ D̃
n+1
L; ” (13)

where, of course Dn+1
L; ” is not known at the old time level. In Reference [7] Harten sug-

gests a heuristic approach that could not be rigorously veri�ed to satisfy (13). However, in
Reference [15] a slight modi�cation of Harten’s prediction strategy has been shown to lead
to a reliable prediction strategy in the sense of (13).
Finally, we brie�y comment on the choice of the threshold value ”. Concerning the quality

of the computation we are aiming at the accuracy of the reference scheme. For this purpose,
the local data provided by the adaptive scheme are projected onto the �nest mesh applying the
inverse multiresolution transformation where the non-signi�cant details are put to zero. The
ideal strategy would be to determine the threshold value ” such that the discretization error
of the reference scheme, i.e. di�erence between exact solution and reference scheme, and the
perturbation error, i.e. the di�erence between the reference scheme and the adaptive scheme,
are balanced. If ” is chosen too large, then the threshold error dominates the discretization
error and we are loosing accuracy because the adaptive grid is too coarse. Vice versa, if ” is
too small, then only few detail coe�cients are discarded and the discretization is overresolved,
i.e. we are loosing e�ciency. Obviously, the number of re�nement levels L and the threshold
value ” are linked. For scalar conservation laws this ideal concept was rigorously veri�ed,
see Reference [15].

3.3. E�cient representation of a nested grid hierarchy

The multiscale setting outlined in Section 3.1 is based on a hierarchy of nested grids. In
the curvilinear case this sequence can be e�ciently realized by a parametric mapping x :
[0; 1]2 → � from a logical space to the physical domain �. In this setting grid cells are the
images of the corresponding cells in logical space, cf. Figure 4. Then grid re�nement can be
interpreted simply as function evaluation. Furthermore, the grid generation process can com-
pletely be separated from the discretization process because the grid generator needs only to
provide a (possibly sparse) representation of the grid function. For the representation of such
a parameter mapping we use tensor product B-splines. These functions seem to be a very
appropriate tool for this task, because they possess excellent approximation properties. Mod-
elling is intuitive and the evaluation is fast and numerically stable. For references on splines
we refer to References [23, 24]. In order to enhance the �exibility we may embed several of
such mappings into a multiblock concept to handle complex geometries, cf. Reference [16].
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For i=0; 1; : : : ; N we denote with Ni;p; T the ith normalized B-spline of order p with respect
to the knot vector T . Here T =(ti)

N+p−2
i=0 is a non-decreasing and non-stationary sequence of

real numbers, i.e. ti6 ti+1 and ti¡ti+p. The B-splines are piecewise polynomials of degree
p− 1 and can be de�ned by the recursion

Ni;1; T (t) = �[ti ; ti+1)(t)=

{
1 if ti6 t¡ti+1

0 otherwise
(14)

Ni;p; T (t) =
t − ti

ti+p−1 − ti Ni;p−1(t) +
ti+p − t
ti+p − ti+1 Ni+1; p−1(t) (15)

From this we build planar grids by tensor products of the form

x(u; v)=
N∑
i=0

M∑
j=0
pi; jNi;pu;U (u)Nj;pv; V (v) (16)

The pij are called control points. Generally, they are not grid points but can be considered
as discrete approximation of the grid function, see Figure 5. For curved con�gurations we
usually choose p=4, i.e. cubic splines [25–27]. However, for the applications in Section 4,
we use p=2, i.e. linear splines.

Figure 4. Parametric mappings.

Figure 5. Control points and evaluation of grid function.
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3.4. Adaptive multiresolution �nite volume schemes

Finally, we have to provide the time evolution on the locally re�ned grid. Here the ultimate
goal is aiming at reducing the computational costs with regard to both computational time
and memory requirements but still maintaining the accuracy of the reference scheme. For this
purpose we apply the multiscale transformation to the reference scheme. For details we refer
the reader to References [14, 15].
Since the reference scheme (6) is assumed to use an explicit time discretization, the time

step size is bounded due to the CFL condition by the smallest cell in the grid. Hence � is de-
termined by the highest re�nement level L, i.e. �= �L. However, for cells on the coarser scales
l=0; : : : ; L−1 we may use �l=2L−l�L to satisfy locally the CFL condition. In Reference [18]
a local time stepping strategy has been incorporated recently to the standard adaptive multires-
olution �nite volume scheme as proposed in Reference [14]. The basic idea is to evolve each
cell on level l with the level-dependent time discretization �l=2L−l�L, l=0; : : : ; L. Obviously,
all cell averages correspond to the same integration time after having performed 2l time steps
with �l, i.e. the cells are synchronized. This is schematically sketched in Figure 6. Therefore,
one macro time step with �0 = 2L�L consists of 2L intermediate time steps corresponding to
the time level tn+i2−L , i=0; : : : ; 2L−1, with step size �L. Obviously, at time tn+i2−L the smallest
synchronization level is determined by

li := min{l; 06 l6L; i mod 2L−l=0}
The intermediate time steps i=0; : : : ; 2L − 1, then take the form

vn+(i+1)2
−L

l;k = vn+i2
−L

l;k − �L
|Vl;k|

Bn+i2
−L

l;k + �L Sn+i2
−L

l;k (17)

for any cell (l;k)∈GL; ” of the current locally adapted grid. Similar to (7) of the reference
scheme the numerical �ux balance is determined by

Bn+i2
−L

l;k =Fn+i2
−L

l;k+e1 − Fn+i2−L

l;k +Gn+i2
−L

l;k+e2 −Gn+i2−L

l;k

with the numerical �uxes

Fn+i2
−L

l;k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F(vn+i2
−L

l;k−qe1 ; : : : ; v
n+i2−L

l;k+qe1−1); li6 l6L and no hanging node at interface

Fn+i2
−L

l+1;2k + F
n+i2−L

l+1;2k+e2 ; li6 l6L and hanging node at interface

Fn+(i−1)2
−L

l;k ; elsewhere

Figure 6. Synchronization on multilevel grid.
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and

Gn+i2
−L

l;k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G(vn+i2
−L

l;k−qe2 ; : : : ; v
n+i2−L

l;k+qe2−1); li6 l6L and no hanging node at interface

Gn+i2
−L

l+1;2k +G
n+i2−L

l+1;2k+e1 ; li6 l6L and hanging node at interface

Gn+(i−1)2
−L

l;k ; elsewhere

Here, we distinguish between the numerical �uxes F and G in the �rst and second parameter
direction of the underlying parametric grid mapping, cf. Section 3.3. For lower scales we
use the �ux of the previous intermediate time step. In the other case, we distinguish whether
there is a hanging node at the corresponding cell edge. If there is no hanging node we have
to compute the quasi one-dimensional numerical �uxes F(w1; : : : ;w2q) and G(w1; : : : ;w2q),
respectively, of the reference scheme due to Section 2. The stencil of numerical �uxes is
characterized by the parameter q. For our second-order scheme it is q=2. Note that locally
non-accessible data in the adaptive grid have to be computed by performing a local re�ning or
coarsening step applying the two-scale transformation according to (11) and (12). In the other
case the numerical �ux is determined by the �uxes of the higher scale to maintain conservation
of the scheme. Here, we employ the fact that the re�nement level of two adjacent cells di�ers
by at most one, i.e. there is at most one hanging node at one edge. This can be ensured by a
grading process of the adaptive grid, cf. Section 3.2. To ensure that the �uxes at an interface
with hanging nodes have already been computed when determining the corresponding �ux
on the coarser level, we perform for each intermediate time level the time evolution �rst for
the cells on the highest level and then successively for the coarser levels. This procedure is
similar to the predictor–corrector method in Reference [28].
The sources are determined by

Sn+i2
−L

l;k =

⎧⎨
⎩
s(x̂l;k; vn+i2

−L

l;k ); li6 l6L

Sn+(i−1) 2
−L

l;k ; 06 l¡li

Note that for the lower levels 0; : : : ; li − 1 we do not compute new �uxes or sources. This
makes the local time stepping version of the adaptive multiresolution concept more e�cient
then the standard approach using a global time step size.
Finally, we have to comment on the grid adaptation step. The ultimate goal is to provide

after one macro time step with �0 = 2L�L as good an approximation as having performed 2L

time steps with the reference scheme on the reference mesh using the time step size �L. There-
fore, we have to make sure that the solution is adequately resolved at each intermediate time
step. For this purpose we perform a grid adaptation step according to Section 3.2 before each
even intermediate time step, i.e. i=0; 2; : : : ; 2L − 2. However, we do not apply the adaptation
process for the whole computational domain, but only for the cells on the levels l= li; : : : ; L,
i.e. level li is considered to be the coarsest scale in the multiscale analysis. Note, that only
for this range of scales new �uxes and sources have to be recomputed. This process provides
us with the sets G

n+(i+1)2−L

L; ” for which we perform the evolution step (17). For the odd in-

termediate time steps we use the same grid as in the previous step, i.e. Gn+i2
−L

L; ” =G
n+(i−1)2−L

L; ” ,
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i=1; 3; : : : ; 2L − 1. Hence, it is possible to track, for instance, the shock position on the
intermediate time levels instead of a priori re�ning the whole range of in�uence.

4. NUMERICAL EXPERIMENTS

In this section, various numerical experiments are considered to show the bene�t of the fully
adaptive multiscale concept for various steady and unsteady �ow problems. We compare
the results for some numerical tests with analytical and numerical results reported in the
literature.
We take g=9:8ms−2 in our computations. The time discretization is determined by the CFL

number. Here, we choose CFL0 =0:8=2LCFLL on the coarser level for the adaptive locally
varying time stepping method. This implies that for the explicit adaptive �nite volume scheme
we have to perform 2L time steps with �= �L. For comparison, we perform computations with
the standard scheme using a global time size corresponding to CFLL=0:8 for all levels.
For the grid adaptation we choose wavelets with three vanishing moments. The threshold
value for the multiscale analysis is ”=10−3. This is an empirical value that always gave
reasonable results in previous experiments not only restricted to shallow water equations. In
general, a small threshold value results in more grid re�nement whereas a large value gives
locally coarser grids. See also the discussion in Section 3.2. We display only numerical results
obtained by the adaptive locally varying time stepping strategy. Note that all computations
have been performed on a PC with an Intel Pentium IV 2:8 GHz processor.

4.1. Supercritical channel �ows

The �rst series of test problems concerns supercritical (Froude number Fr= u=
√
gh¿1) �ows

through channels with sudden change in cross section. We use three di�erent channel con-
�gurations utilized by several authors to test and validate their numerical methods, see for
instance References [3, 4]. We apply slip boundary conditions at the solid wall, i.e. the normal
velocity is set to zero (u; v) ·n=0. These problems lead to the formation of steady state �ows
with hydraulic jumps (shock waves) and negative jumps (rarefaction waves).

4.1.1. Oblique hydraulic jump. In the �rst test, we consider supercritical �ow in a channel
constricted from one side wall. The geometry of the problem is shown in Figure 7. It can
be represented by a bilinear spline with knot vectors U =(0; 0; 0:25; 1; 1), V =(0; 0; 1; 1) and
control points

(pi; j)=

(
(0; 0) (10; 0) (40; 30 sin �)

(0; 30) (10; 30) (40; 30)

)
(18)

where the angle of constriction is �=8:95◦. The initial conditions are the water depth h=1m,
velocity u=8:57 and v=0ms−1. We use in�ow conditions at x=0m, slip boundary conditions
along y-direction, and out�ow conditions at x=40m. The problem leads to the formation of
a stationary hydraulic jump at a particular angle �.
Computations were initialized with a structured grid with a resolution of 15× 10 cells and

were run to steady state. Figure 7 shows the contours of the steady state water depth using
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Figure 7. Oblique hydraulic jump problem (�=8:95◦). Left: �nal grid using
six re�nement levels, right: water depth.

Table I. CPU time (s) vs number of re�nement levels.

L CGTS CLTS

4 1976 1229
5 8423 5217
6 32 765 20 218
7 145 821 84 683

L=6 re�nement levels. The shock is sharply captured without oscillations. The approximate
shock angle �≈ 29:753◦ agrees very well with exact analytical solution �=30◦. Numerical
values of the water depth h=1:499m and the velocity |u|=7:951ms−1 behind the shock are
also in satisfactory agreement with the analytical solution h=1:5 m, |u|=7:955 ms−1.
In Table I we compare the CPU times for the fully adaptive �nite volume scheme us-

ing global CGTS and local time stepping CLTS, respectively, where we vary the number of
re�nement levels L and �x the coarse grid discretization. The speed up is improved with in-
creasing L. For the highest number of re�nement levels the speed-up factor is approximately
2. By the spatial adaptation the data are signi�cantly reduced. For instance, the uniform dis-
cretization with L=6 re�nement levels consists of 614 400 cells, whereas the �nal adaptive
mesh consists of 23 283 cells only.

4.1.2. Channel constricted on both sides. In this test case the channel is symmetrically con-
stricted on both sides with angle �=5◦. The geometry of the channel is depicted in Figure 8
where we impose supercritical in�ow conditions at x=0 m with water depth h=1 m and
Froude number Fr=2:5. We use an initial grid with a resolution of 45× 20 and a maximum
re�nement level of Lmax =5.
Figure 8 shows the steady state water depth and the corresponding adaptive grid, respec-

tively. The cross-wave pattern due to constriction is well resolved. Again we can compare
numerical values of the water depth with the analytical solution. The numerical water depths
of the �rst and second plateau are h=1:249 and h=1:525 m, respectively. Those results
compare very well with the analytical ones h=1:254 and h=1:55 m. The CPU times in
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Figure 8. Computational grids for the channel constricted on both sides problem. Top: �nal grid
using �ve re�nement levels, bottom: contours of the water depth.

second were 107 448 and 64 237 s for the adaptive scheme using global and local time step,
respectively. The �nal adaptive grid consists of 93 084 cells in comparison to 921 600 of the
uniform �nest discretization.

4.1.3. Channel with variable width. In the next example, we consider a more complicated
symmetric channel constricted on both sides from x=10 to x=30m. The constriction angle is
�=15◦. Figure 9 displays the geometry and the initial grid, whose parameter representation is
given by the bilinear spline with knot vectors U =(0; 0; 19 ;

1
3 ; 1; 1), V =(0; 0; 1; 1) and control

points

(pi; j)=

(
(0; 0) (10; 0) (30; �) (90; �)

(0; 40) (10; 40) (30; 40− �) (90; 40− �)

)
(19)
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Figure 9. Contours of the water depth for the symmetry channel with variable width problem.
Top: �nal grid using �ve re�nement levels, bottom: contours of the water depth.

where �=20 sin �. We apply the same boundary conditions as before. The in�ow conditions
at x=0 m are the water depth h=1 m and the Froude number Fr=2:5. We again use an
initial grid with a resolution of 45×20, a maximum re�nement level of Lmax =5, and run the
model to steady state.
Figure 9 shows the steady state water depth and the corresponding adaptive grid, respec-

tively. The cross-wave pattern now includes both hydraulic jumps and rarefaction waves due
to the presence of concave corners as observed in References [3, 4]. One can see that the
fully adaptive scheme resolves well hydraulic jumps, negative waves and their interactions.
The CPU times are 163 489 and 95 406 s for the adaptive scheme using global and local
time stepping, respectively. The �nal adaptive grid consists of 133 605 cells in comparison to
921 600 of the uniform �nest discretization.
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4.2. Circular dam break

In this example we consider the circular dam break problem. A variety of numerical results
by di�erent schemes are available in References [2, 4] and the references therein. The initial
conditions are two states of water separated by a cylinder of radius r=11 m. The depth
of the water inside the dam is 10 m and outside the dam is 1 m. Here we are interested
in the instant when the cylindrical wall is removed and the subsequent time evolution of
the �ow.
The computational domain is a square [0m; 50m]×[0m; 50m]. The coarsest grid is discretized

by 15 × 15 cells. The model was run up to time T =0:7 s. Figure 10 shows the water
depth contours and the corresponding adaptive grid with L=7 re�nement levels. We display
also the water surface elevation in three dimensions in Figure 11. One can observe that the
circular symmetry of the front is well preserved without irregular depressing waves. The
results of contours of water surface elevations are in close agreement with those published in
References [2, 4], but the present computations require less computer time. The CPU time for
the adaptive scheme using global and local time stepping are 22 737 and 12 461s, respectively.
The �nal adaptive grid consists of 79 788 cells in comparison to 921 600 of the uniform �nest
discretization.

4.3. Bore wave past a hump

This test gives unsteady results of a right-going bore wave past a downward hump. The
physical domain is shown in Figure 12. The Froude number is Fr=2, and the initial conditions
to the left and the right of the bore are taken from Reference [29]

hR = 1m; uR= vR=0ms−1 (20)

hL =
hR
2
(
√
1 + 8Fr2 − 1) m; uL=Fr

(
1− hR

hL

)√
ghR ms−1; vL=0ms−1 (21)

The initial discontinuity is located at x= − 5:5 m. The bottom function b(x; y) is de�ned by

b(x; y)= − 0:4e0:2(12:5−x2−y2) (22)

The computational domain is a square [−6m; 10m]× [−10m; 10m]. We use in�ow boundary
conditions (initial data) at the left boundary and out�ow boundary conditions (data from the
attached �ow �eld) for the other boundaries.
Due to the initial data the situation of a lake at rest does only occur near the right border of

the computational domain. Therefore, the in�uence of the imbalance between the �ux gradient
and source terms caused by discretization (8) is not observed in our computations. In general,
a well-balanced discretization is preferable to avoid the spurious oscillations in regions where
the water surface is locally constant. These oscillations are detected by the detail coe�cients
and trigger local grid re�nement in these regions, i.e. the computational costs are increased.
To avoid these unphysical oscillations, the reference scheme we are using for the present
computations has to be replaced by a well-balanced scheme of higher order. Since the �ux
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Figure 10. Circular dam break problem. Left: �nal grid using six re�nement
levels, right: contours of the water depth.

Figure 11. Water surface pro�le after breaking of circular dam.

computations are performed on a locally adapted grid, one has to ensure that the adaptive
scheme is well-balanced too. For this purpose, one might use the well-balanced scheme of
higher order for unstructured grids presented in References [5, 30].
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Figure 12. Bore wave past a hump problem. Left: �nal grid using six re�nement levels,
right: contours of the water depth.

The computation uses seven levels of re�nement and the coarse initial grid corresponds to
15×15 cells. Figure 12 shows the adaptive grid and the numerical approximation of the water
depth with 25 equally spaced contours at time T =2. A 3D plot of the water depth is depicted
in Figure 14. In Figure 13 we also present the contour plots for the velocity components. We
observe a very rich structure behind the shock wave that triggers the local grid re�nement in
this region. Obviously, it is important to perform grid adaptation with respect to all quantities.
For instance, using the water depth or water surface as monitoring function the structures in
the velocity and momentum �eld are not detected and therefore not adequately resolved,
cf. Reference [29]. The required CPU time for the adaptive scheme using global and local
time stepping are 19 375 and 9888 s, respectively. The �nal adaptive grid consists of 261 720
cells in comparison to 3 686 400 of the uniform �nest discretization.

4.4. Single Mach re�ection at a sloping wall

The �nal test concerns the bore re�ection at a sea wall [29, 31]. The geometry of the problem
is shown in Figure 15 where a right traveling bore wave along the basin interacts with a wall
de�ected by an angle 25◦. The initial Froude number and the left and right states to the bore
are the same as in the previous example. The initial shock is located at the point x= −10m.
For the lower boundary we use re�ecting conditions and out�ow conditions for the upper
boundary. On the left boundary we impose in�ow conditions and out�ow conditions on the
right.
The computation is initialized by a structured grid with a resolution of 30 × 10 cells and

we run to time T =8. We use L=6 levels of re�nement and a threshold value ”=10−2.
Figures 15 and 16 show the adaptive grid, the water depth and the x-velocity component with
35 equally spaced contours, respectively. The re�ective pattern is well resolved in comparison
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Figure 13. Bore wave past a hump problem. Left: contours of the x-velocity,
right: contours of the y-velocity.

Figure 14. Bore wave past a hump problem. Water surface pro�le.

with results presented in References [29, 31]. The bore wave has been captured sharply. The
computations require 4542 s for the adaptive scheme using local time stepping and 8615 s for
the same scheme using global time stepping. The speed-up factor is approximately 2. The
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Figure 15. Bore re�ection problem. Top: �nal grid using six re�nement
levels, bottom: contours of the water depth.

Figure 16. Bore re�ection problem: contours of the x-velocity.

uniform mesh contains 1 843 200 cells. Due to adaptation the �nal adaptive grid consists of
47 430 cells only resulting in a signi�cant reduction of the computational costs (Figure 17).
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Figure 17. The water surface pro�le for the bore re�ection problem.

5. CONCLUSIONS

In this paper, we have extended and tested the concept of the fully adaptive multiscale �nite
volume schemes to two-dimensional shallow water equations with general geometry. The
concept combines a quadtree grid generation strategy using a B-spline method and fully
adaptive multiresolution methods. The essential feature of the presented scheme is the use
of a local time stepping strategy at di�erent resolution levels of the grid hierarchy. By this
strategy we, in particular, save an additional factor of about 2. Several test problems have
been presented to show the high e�ciency and the high accuracy of the presented method.
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